skip to main content


Search for: All records

Creators/Authors contains: "Moored, Keith W."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The interaction between a pair of tandem in-line oscillating hydrofoils is presented. The hydrofoils undergo sinusoidal pitching about their leading edges with a fixed Strouhal number of [Formula: see text] and a Reynolds number of 10,000. The streamwise spacing, spanwise spacing, and phase offset between the hydrofoils are varied. Force measurements are employed to investigate changes in thrust, lift, spanwise force, power consumption, and propulsive efficiency. A method to mitigate confounding factors from connecting rod drag is employed using streamlined fairings. Near and far streamwise spacing regions are identified with a transition occurring near 0.875 chord lengths downstream. Decreasing streamwise spacing in the far region causes a rise in the maximum power consumption of the follower hydrofoil. Decreasing streamwise spacing in the near region results in an opposite trend, with a sharp drop in maximum average power consumption by the follower. An empirical model for power consumption of the follower is developed. Increased spanwise spacing is found to weaken the interaction between the hydrofoils, driving them toward their isolated performance. This phenomenon is related to the spanwise contraction of the wake shed by the leader and is a function of the overlap of the wake region impacting the follower.

     
    more » « less
    Free, publicly-accessible full text available November 1, 2024
  2. Abstract

    A transient two-dimensional acoustic boundary element solver is coupled to a potential flow boundary element solver via Powell's acoustic analogy to determine the acoustic emission of isolated hydrofoils performing biologically-inspired motions. The flow-acoustic boundary element framework is validated against experimental and asymptotic solutions for the noise produced by canonical vortex-body interactions. The numerical framework then characterizes the noise production of an oscillating foil, which is a simple representation of a fish caudal fin. A rigid NACA 0012 hydrofoil is subjected to combined heaving and pitching motions for Strouhal numbers ($0.03 < St < 1$) based on peak-to-peak amplitudes and chord-based reduced frequencies ($0.125 < f^* < 1$) that span the parameter space of many swimming fish species. A dipolar acoustic directivity is found for all motions, frequencies, and amplitudes considered, and the peak noise level increases with both the reduced frequency and the Strouhal number. A combined heaving and pitching motion produces less noise than either a purely pitching or purely heaving foil at a fixed reduced frequency and amplitude of motion. Correlations of the lift and power coefficients with the peak root-mean-square acoustic pressure levels are determined, which could be utilized to develop long-range, quiet swimmers.

     
    more » « less
  3. Abstract When swimming near a solid planar boundary, bio-inspired propulsors can naturally equilibrate to certain distances from that boundary. How these equilibria are affected by asymmetric swimming kinematics is unknown. We present here a study of near-boundary pitching hydrofoils based on water channel experiments and potential flow simulations. We found that asymmetric pitch kinematics do affect near-boundary equilibria, resulting in the equilibria shifting either closer to or away from the planar boundary. The magnitude of the shift depends on whether the pitch kinematics have spatial asymmetry (e.g. a bias angle, θ 0 ) or temporal asymmetry (e.g. a stroke-speed ratio, τ ). Swimming at stable equilibrium requires less active control, while shifting the equilibrium closer to the boundary can result in higher thrust with no measurable change in propulsive efficiency. Our work reveals how asymmetric kinematics could be used to fine-tune a hydrofoil’s interaction with a nearby boundary, and it offers a starting point for understanding how fish and birds use asymmetries to swim near substrates, water surfaces, and sidewalls. 
    more » « less
  4. null (Ed.)
    Animals and bio-inspired robots can swim/fly faster near solid surfaces, with little to no loss in efficiency. How these benefits change with propulsor aspect ratio is unknown. Here we show that lowering the aspect ratio weakens unsteady ground effect, thrust enhancements become less noticeable, stable equilibrium altitudes shift lower and become weaker and wake asymmetries become less pronounced. Water-channel experiments and potential flow simulations reveal that these effects are consistent with known unsteady aerodynamic scalings. We also discovered a second equilibrium altitude even closer to the wall ( ${<}0.35$ chord lengths). This second equilibrium is unstable, particularly for high-aspect-ratio foils. Active control may therefore be required for high-aspect-ratio swimmers hoping to get the full benefit of near-ground swimming. The fact that aspect ratio alters near-ground propulsion suggests that it may be a key design parameter for animals and robots that swim/fly near a seafloor or surface of a lake. 
    more » « less
  5. null (Ed.)
    Scaling laws for the thrust production and power consumption of a purely pitching hydrofoil in ground effect are presented. For the first time, ground-effect scaling laws based on physical insights capture the propulsive performance over a wide range of biologically relevant Strouhal numbers, dimensionless amplitudes and dimensionless ground distances. This is achieved by advancing previous scaling laws (Moored & Quinn ( AIAA J. , 2018, pp. 1–15)) with physics-driven modifications to the added mass and circulatory forces to account for ground distance variations. The key physics introduced are the increase in the added mass of a foil near the ground and the reduction in the influence of a wake-vortex system due to the influence of its image system. The scaling laws are found to be in good agreement with new inviscid simulations and viscous experiments, and can be used to accelerate the design of bio-inspired hydrofoils that oscillate near a ground plane or two out-of-phase foils in a side-by-side arrangement. 
    more » « less
  6. Many species of fish gather in dense collectives or schools where there are significant flow interactions from their shed wakes. Commonly, these swimmers shed a classic reverse von Kármán wake, however, schooling eels produce a bifurcated wake topology with two vortex rings shed per oscillation cycle. To examine the schooling interactions of a hydrofoil with a bifurcated wake topology, we present tomographic particle image velocimetry (tomo PIV) measurements of the flow interactions and direct force measurements of the performance of two low-aspect-ratio hydrofoils ( A R = 0.5 ) in an in-line and a staggered arrangement. Surprisingly, when the leader and follower are interacting in either arrangement there are only minor alterations to the flowfields beyond the superposition of the flowfields produced by the isolated leader and follower. Motivated by this finding, Garrick’s linear theory, a linear unsteady hydrofoil theory based on a potential flow assumption, was adapted to predict the lift and thrust performance of the follower. Here, the follower hydrofoil interacting with the leader’s wake is considered as the superposition of an isolated pitching foil with a time-varying cross-stream velocity derived from the wake flow measurements of the isolated leader. Linear theory predictions accurately capture the time-averaged lift force and some of the major peaks in thrust derived from the follower interacting with the leader’s wake in a staggered arrangement. The thrust peaks that are not predicted by linear theory are likely driven by spatial variations in the flowfield acting on the follower or nonlinear flow interactions; neither of which are accounted for in the simple theory. This suggests that unsteady potential flow theory that does account for spatial variations in the flowfield acting on a hydrofoil can provide a relatively simple framework to understand and model the flow interactions that occur in schooling fish. Additionally, schooling eels can derive thrust and efficiency increases of 63-80% in either a in-line or a staggered arrangement where the follower is between two branched momentum jets or with one momentum jet branch directly impinging on it, respectively. 
    more » « less
  7. ‘Ground effect’ refers to the enhanced performance enjoyed by fliers or swimmers operating close to the ground. We derive a number of exact solutions for this phenomenon, thereby elucidating the underlying physical mechanisms involved in ground effect. Unlike previous analytic studies, our solutions are not restricted to particular parameter regimes, such as ‘weak’ or ‘extreme’ ground effect, and do not even require thin aerofoil theory. Moreover, the solutions are valid for a hitherto intractable range of flow phenomena, including point vortices, uniform and straining flows, unsteady motions of the wing, and the Kutta condition. We model the ground effect as the potential flow past a wing inclined above a flat wall. The solution of the model requires two steps: firstly, a coordinate transformation between the physical domain and a concentric annulus; and secondly, the solution of the potential flow problem inside the annulus. We show that both steps can be solved by introducing a new special function which is straightforward to compute. Moreover, the ensuing solutions are simple to express and offer new insight into the mathematical structure of ground effect. In order to identify the missing physics in our potential flow model, we compare our solutions against new experimental data. The experiments show that boundary layer separation on the wing and wall occurs at small angles of attack, and we suggest ways in which our model could be extended to account for these effects. 
    more » « less
  8. Many aquatic animals propel themselves efficiently through the water by oscillating flexible fins. These fins are, however, not homogeneously flexible, but instead their flexural stiffness varies along their chord and span. Here, we develop a simple model of these functionally graded materials where the chordwise flexibility of the foil is modeled by one or two torsional springs along the chord line. The torsional spring structural model is then strongly coupled to a boundary element fluid model to simulate the fluid–structure interactions. We show that the effective flexibility of the combined fluid–structure system scales with the ratio of the added mass forces acting on the passive portion of the foil and the elastic forces defined by the torsional spring hinge. Importantly, by considering this new scaling of the effective flexibility, the propulsive performance is then detailed for a foil with a flexible hinge that is actively pitching about its leading edge. The scaling allows for the resonance frequency of the fluid–structure system and the bending pattern of the propulsor to be independently varied by altering the effective flexibility and the location of a single torsional spring along the chord, respectively. It is shown that increasing the flexion ratio, by moving the spring away from the leading edge, leads to enhanced propulsive efficiency, but compromises the thrust production. Proper combination of two flexible hinges, however, can result in a gain in both the thrust production and propulsive efficiency. 
    more » « less